Part II

Languages

Languages

Definition

A language L is a set of strings over $\boldsymbol{\Sigma}$. In other words $L \subseteq \boldsymbol{\Sigma}^{*}$.

Languages

Definition

A language L is a set of strings over $\boldsymbol{\Sigma}$. In other words $L \subseteq \boldsymbol{\Sigma}^{*}$.
Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is

$$
A B=\{x y \mid x \in A, y \in B\} .
$$

- For languages $\boldsymbol{A}, \boldsymbol{B}$, their union is $\boldsymbol{A} \cup B$, intersection is
$\boldsymbol{A} \cap \boldsymbol{B}$, and difference is $\boldsymbol{A} \backslash \boldsymbol{B}$ (also written as $\boldsymbol{A}-\boldsymbol{B}$).
- For language $\boldsymbol{A} \subseteq \boldsymbol{\Sigma}^{*}$ the complement of \boldsymbol{A} is $\overline{\boldsymbol{A}}=\boldsymbol{\Sigma}^{*} \backslash \boldsymbol{A}$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \boldsymbol{\Sigma}^{*}$ and $\boldsymbol{n} \in \mathbb{N}$, define $\boldsymbol{L}^{\boldsymbol{n}}$ inductively as follows.

$$
L^{n}= \begin{cases}\{\epsilon\} & \text { if } n=0 \\ L \bullet\left(L^{n-1}\right) & \text { if } n>0\end{cases}
$$

And define $L^{*}=\cup_{n \geq 0} L^{n}$, and $L^{+}=\cup_{n \geq 1} L^{n}$

Exercise

Problem

Answer the following questions taking $A, B \subseteq\{\mathbf{0}, \mathbf{1}\}^{*}$.
(1) Is $\epsilon=\{\epsilon\}$? Is $\emptyset=\{\epsilon\}$?
(2) What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
(3) What is $\{\epsilon\} \bullet A$? And $A \bullet\{\epsilon\}$?
(4) If $|A|=2$ and $|B|=3$, what is $|A \cdot B|$?

Exercise

Problem

Consider languages over $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$.
(1) What is \emptyset^{0} ?
(2) If $|L|=2$, then what is $\left|L^{4}\right|$?
(3) What is $\emptyset^{*},\{\epsilon\}^{*}, \epsilon^{*}$?
(4) For what L is L^{*} finite?
(5) What is $\emptyset^{+},\{\epsilon\}^{+}, \epsilon^{+}$?

Languages and Computation

What are we interested in computing? Mostly functions.
Informal defintion: An algorithm \mathcal{A} computes a function $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow \boldsymbol{\Sigma}^{*}$ if for all $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs $f(w)$.

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program M check if M halts on empty input

Languages and Computation

Definition

A function \boldsymbol{f} over $\boldsymbol{\Sigma}^{*}$ is a boolean if $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}$.

Languages and Computation

Definition

A function \boldsymbol{f} over $\boldsymbol{\Sigma}^{*}$ is a boolean if $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}$.
Observation: There is a bijection between boolean functions and languages.

- Given boolean function $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ define language $L_{f}=\left\{w \in \Sigma^{*} \mid f(w)=1\right\}$

Languages and Computation

Definition

A function \boldsymbol{f} over $\boldsymbol{\Sigma}^{*}$ is a boolean if $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}$.
Observation: There is a bijection between boolean functions and languages.

- Given boolean function $\boldsymbol{f}: \boldsymbol{\Sigma}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ define language $L_{f}=\left\{w \in \Sigma^{*} \mid f(w)=1\right\}$
- Given language $L \subseteq \boldsymbol{\Sigma}^{*}$ define boolean function $f: \boldsymbol{\Sigma}^{*} \rightarrow\{0,1\}$ as follows: $f(w)=1$ if $w \in L$ and $f(w)=0$ otherwise.

Language recognition problem

Definition

For a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ the language recognition problem associate with L is the following: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$, is $\boldsymbol{w} \in L$?

Language recognition problem

Definition

For a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ the language recognition problem associate with L is the following: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$, is $\boldsymbol{w} \in \boldsymbol{L}$?

- Equivalent to the problem of "computing" the function f_{L}.
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_{f} ?

Language recognition problem

Definition

For a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ the language recognition problem associate with L is the following: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$, is $\boldsymbol{w} \in L$?

- Equivalent to the problem of "computing" the function f_{L}.
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_{f} ?

Why two different views? Helpful in understanding different aspects?

How many languages are there?

Recall:

Definition

An set \boldsymbol{A} is countably infinite if there is a bijection \boldsymbol{f} between the natural numbers and \boldsymbol{A}.

Theorem
 $\boldsymbol{\Sigma}^{*}$ is countably infinite for every finite $\boldsymbol{\Sigma}$.

The set of all languages is $\mathbb{P}\left(\boldsymbol{\Sigma}^{*}\right)$ the power set of $\boldsymbol{\Sigma}^{*}$

How many languages are there?

Recall:

Definition

An set \boldsymbol{A} is countably infinite if there is a bijection \boldsymbol{f} between the natural numbers and \boldsymbol{A}.

Theorem

$\boldsymbol{\Sigma}^{*}$ is countably infinite for every finite $\boldsymbol{\Sigma}$.
The set of all languages is $\mathbb{P}\left(\boldsymbol{\Sigma}^{*}\right)$ the power set of $\boldsymbol{\Sigma}^{*}$

Theorem (Cantor)

$\mathbb{P}\left(\boldsymbol{\Sigma}^{*}\right)$ is not countably infinite for any finite $\boldsymbol{\Sigma}$.

Cantor's diagonalization argument

Theorem (Cantor)

$\mathbb{P}(\mathbb{N})$ is not countably infinite.

- Suppose $\mathbb{P}(\mathbb{N})$ is countable infinite. Let S_{1}, S_{2}, \ldots, be an enumeration of all subsets of numbers.
- Let \boldsymbol{D} be the following diagonal subset of numbers.

$$
D=\left\{i \mid i \notin S_{i}\right\}
$$

- Since D is a set of numbers, by assumption, $D=S_{j}$ for some j.
- Question: Is $j \in D$?

Consequences for Computation

- How many C programs are there? The set of C programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

Consequences for Computation

- How many C programs are there? The set of C programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting langues uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition

A language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ is finite if $|\boldsymbol{L}|=\boldsymbol{n}$ for some integer \boldsymbol{n}.
Exercise: Prove the following.

Theorem

The set of all finite languages is countably infinite.

CS/ECE 374: Algorithms \& Models of Computation, Fall 2019

Regular Languages and Expressions

Lecture 2
August 29, 2019

Part I

Regular Languages

Regular Languages

A class of simple but very useful languages. The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language

Regular Languages

A class of simple but very useful languages. The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length 1

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length $\mathbf{1}$
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length $\mathbf{1}$
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length $\mathbf{1}$
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \boldsymbol{\Sigma}$; here we are interpreting \boldsymbol{a} as a string of length $\mathbf{1}$
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?
Lemma
Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\} . L=\{w| | w \mid \leq 100\}$. Why?

More Examples

- $\{\boldsymbol{w} \mid \boldsymbol{w}$ is a keyword in Python program $\}$
- $\{w \mid w$ is a valid date of the form mm/dd/yy $\}$
- $\{\boldsymbol{w} \mid \boldsymbol{w}$ describes a valid Roman numeral $\}$ $\{I, I I, I I I, I V, V, V I, V I I, V I I I, I X, X, X I, \ldots\}$.
- $\{w \mid w$ contains "CS374" as a substring $\}$.

Part II

Regular Expressions

xkcd

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star named after him.

Inductive Definition

A regular expression \mathbf{r} over an alphabhe $\boldsymbol{\Sigma}$ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive Definition

A regular expression \mathbf{r} over an alphabhe $\boldsymbol{\Sigma}$ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages R_{1} and R_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \mathbf{r}_{2}\right)$ denotes the language $R_{1} R_{2}$
- $\left(\mathbf{r}_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{$ a\} regular for $\boldsymbol{a} \in \boldsymbol{\Sigma}$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$\mathbf{r}_{1}+\mathbf{r}_{2}$ denotes $R_{1} \cup R_{2}$
$\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}}$ denotes $R_{1} R_{2}$
\mathbf{r}^{*} denote \boldsymbol{R}^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions $\mathbf{r}_{\mathbf{1}}$ and \mathbf{r}_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are equivalent if

$$
L\left(r_{1}\right)=L\left(r_{2}\right)
$$

- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r s^{*}+t=\left(r\left(s^{*}\right)\right)+t$

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L (r)}$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if

$$
L\left(r_{1}\right)=L\left(r_{2}\right) .
$$

- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r s^{*}+t=\left(r\left(s^{*}\right)\right)+t$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L (} \mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r s^{*}+t=\left(r\left(s^{*}\right)\right)+t$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r r}^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L}(\mathbf{r})$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language! Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{0,1\}$
- Two regular expressions $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r s^{*}+t=\left(r\left(s^{*}\right)\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r} \mathbf{r}^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression \mathbf{r} we would like to "understand" $L(\mathbf{r})$ (say by giving an English description)

Understanding regular expressions

- (0 $\mathbf{0} \mathbf{1})^{*}$: set of all strings over $\{\mathbf{0}, \mathbf{1}\}$

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
$-(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring

Understanding regular expressions

- $(0+1) *$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}\right)^{*}$: strings with number of $\mathbf{1}^{\prime}$'s divisible by $\mathbf{3}$

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*} 10^{*}\right)^{*}$: strings with number of $\mathbf{1}^{\prime}$'s divisible by $\mathbf{3}$
- Ø0:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*}\right.$: strings with number of $\mathbf{1}^{\prime}$'s divisible by $\mathbf{3}$
- Ø0: \{\}

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{1 0} \mathbf{1 0} \mathbf{0}^{*}\right.$: strings with number of $\mathbf{1}^{\prime}$'s divisible by $\mathbf{3}$
- Ø0: $\}$
- $(\epsilon+1)(01)^{*}(\epsilon+0)$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of $\mathbf{1}^{\prime}$ s divisible by $\mathbf{3}$
- Ø0: \{\}
- $(\epsilon+\mathbf{1})(\mathbf{0 1})^{*}(\epsilon+\mathbf{0})$: alteranting 0 s and 1 s. Alternatively, no two consecutive 0 s and no two conescutive 1 s

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of $\mathbf{1}^{\prime}$ s divisible by $\mathbf{3}$
- Ø0: \{\}
- $(\epsilon+\mathbf{1})(\mathbf{0 1})^{*}(\epsilon+\mathbf{0})$: alteranting 0 s and 1 s . Alternatively, no two consecutive 0 s and no two conescutive 1 s
- $(\epsilon+0)(1+10)^{*}$:

